Simultaneous approximation terms and functional accuracy for diffusion problems discretized with multidimensional summation-by-parts operators

نویسندگان

چکیده

Several types of simultaneous approximation term (SAT) for diffusion problems discretized with diagonal-norm multidimensional summation-by-parts (SBP) operators are analyzed based on a common framework. Conditions under which the SBP-SAT discretizations consistent, conservative, adjoint and energy stable presented. For SATs leading to primal consistent discretizations, error in output functionals is shown be order h2p when degree p SBP operator used discretize spatial derivatives. SAT penalty coefficients corresponding various discontinuous Galerkin fluxes developed elliptic partial differential equations identified. We demonstrate that original method Bassi Rebay, modified symmetric interior equivalent implemented diagonal-E have diagonal norm matrix, e.g., Legendre-Gauss-Lobatto one space dimension. Similarly, local compact schemes this family operators. The analysis remains valid curvilinear grids if ?p+1 bijective polynomial mapping from reference physical elements used. Numerical experiments two-dimensional Poisson problem support theoretical results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Approximation Terms for Multi-dimensional Summation-by-Parts Operators

This paper continues our effort to generalize summation-by-parts (SBP) finite-difference methods beyond tensor-products in multiple dimensions. In this work, we focus on the accurate and stable coupling of elements in the context of discontinuous solution spaces. We show how penalty terms — simultaneous approximation terms (SATs) — can be adapted to discretizations based on multi-dimensional SB...

متن کامل

New Diagonal-Norm Summation-by-Parts Operators for the First Derivative with Increased Order of Accuracy

In combination with simultaneous approximation terms, summation-by-parts (SBP) operators provide a flexible and efficient methodology that leads to consistent, conservative, and provably stable high-order discretizations. Traditional diagonal-norm SBP operators with a repeating interior point operator lead to solutions that have a global order of accuracy lower than the order of the interior po...

متن کامل

Multidimensional Summation-by-Parts Operators: General Theory and Application to Simplex Elements

Summation-by-parts (SBP) finite-difference discretizations share many attractive properties with Galerkin finite-element methods (FEMs), including time stability and superconvergent functionals; however, unlike FEMs, SBP operators are not completely determined by a basis, so the potential exists to tailor SBP operators to meet different objectives. To date, application of highorder SBP discreti...

متن کامل

On Coordinate Transformations for Summation-by-Parts Operators

High order finite difference methods obeying a summation-by-parts (SBP) rule are developed for equidistant grids. With curvilinear grids, a coordinate transformation operator that does not destroy the SBP property must be used. We show that it is impossible to construct such an operator without decreasing the order of accuracy of the method.

متن کامل

Summation-By-Parts Operators for Time Discretisation: Initial Investigations

We develop a new high order accurate time-discretisation technique for initial value problems. We focus on problems that originate from a space discretisation using high order finite difference methods on summation-by-parts form with weak boundary conditions, and extend that technique to the time-domain. The new timediscretisation method is global and together with the approximation in space, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2021

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2021.110634